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A physical model for plastic deformation 
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A general theoretical model for plastic deformation is presented, which is based on 
considerations of the variation of internal stored energy during deformation. It is 
proposed that the deformation rate will always be such that the rate of energy dissipation 
in the deforming material is minimal. The physical justification of this principle is dis- 
cussed. The model is applied to dislocation deformation in metals and the result is then 
compared with experimental observations in aluminium. 

1. Introduction 
The key problem in developing a comprehensive 
theory of plastic deformation in crystalline mate- 
rials is to find the correct way to connect the 
relatively well-known behaviour of single defects 
with the equally well-known macroscopic defor- 
mation phenomena which result from the collec- 
tive effects of a great number of  events involving 
single defects. There are two different approaches 
that have been used in attempting to solve this 
problem. In the first, more common, approach, 
the starting point is the consideration of single 
defect interactions, the effects of which are added 
and averaged using a statistical method to obtain 
the macroscopic net effect. The other approach 
considers the macroscopic behaviour and regards 
microscopic processes within that framework. The 
current state of  the theories of plastic deformation 
are described well by Argon [1] and Kocks etal. 
[2]. Since their publication there has not been 
much significant progress. 

In the present theory the starting point is 
macroscopic deformation. This is connected with 
the microscopic process through internal state 
variables that should have a clear physical signifi- 
cance. In its general form the theory is applicable 
to a wide range of materials, including non- 
crystalline ones, even though it has been developed 
principally with metals in mind. Altogether the 
present model has been constructed in such a way 
that it relies on physical principles as much as 
possible. In this respect it differs from the model 
of Hart [3, 4] which is phenomenological. The 
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present model is similar in some respects to the 
thermodynamic theory presented by Kratochvil 
and Dillon [5] and the approach of Sumino [6]. 
A simpler version of this model has been published 
by the present author [7]. 

In the following the model is first described in 
its general form and then a simple application to 
dislocation deformation is developed, which is 
fitted to the experimental data of  aluminium. 

2. General theory 
It is assumed in this theory that a number of 
variables, xi, exist that completely characterize 
the internal structure of the crystal, as far as it is 
relevant to plastic deformation. These internal 
state variables depend on the structural features of 
the crystal, such as dislocation density and arrange- 
ment, number of point defects etc. The applied 
external stress, o, also has the role of a state 
variable in this theory: it is an external state 
variable. During plastic deformation the values of 
the state variables generally vary with time. The 
variations in the internal parameters, xi,  reflect 
changes in the structure: and the external stress 
is given as a function of time, o(t). 

Together, the plastically deforming specimen 
and the external influences on it form a system, 
whose behaviour is completely determined by the 
current values of  the state variables. It follows that 
the changes in the internal state of the crystal, 
that is, the time derivatives, 2i ,  as well as the 
deformation rate, &, are uniquely dependent on 
the state variables, o and x~. In this theory the 
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internal stored energy plays a central role in 
formulating the laws that govern the behaviour of 
the system and ultimately the dependences of  the 
deformation response, b(t), on the external stress, 
e(t). Here, the stored energy is understood to be a 
function of the state variables of the system, 
U(o, xl), and since the values of the state variables 
vary with time during plastic deformation this 
implies that the stored energy is also a function of 
time: U(t) = U[o(t),xi(t)]. 

The physical meaning of the stored energy, U, 
needs some clarification. According to the first 
law of thermodynamics the change of internal 
energy of a crystal undergoing plastic deformation 
is the difference between the external work done 
on the crystal and the amount of  heat that is 
produced in the deformation. This change in the 
internal energy, or the associated change in enth- 
alpy, is generally identified with the stored energy 
[8, 9]. All the heat produced is not, of  course, 
immediately lost from the crystal, and the rise in 
temperature also contributes to the internal energy. 
In the present theory, however, only the part of 
the change in the internal energy that does not 
include the effects of  the temperature change, is 
termed stored energy. In other words, here, the 
stored energy U(t) is a function that gives the 
change in the internal energy after the crystal has 
returned to its original temperature if the defor- 
mation had been stopped at some instant, t. Con- 
sequently, the stored energy in this theory is not 
equal to any thermodynamic quantity, such as 
internal energy, except in the hypothetical case 
of  a completely isothermal deformation. 

In plastic deformation the stored energy is 
continuously converted to heat by various fric- 
tional processes at some rate, P, per unit volume. 
At the same time the external stress does work 
W, when the shape of the specimen changes, and 
the stored energy is increased by this amount. 
Consequently, the energy rate balance per unit 
volume of the crystal can be written as follows: 

3U ~U 
6 = ~ g d + Y - - S : i  = re--P, (1) 

T" �9 axi 

where the dots represent differentiation with 
respect to time, as everywhere in the following. 

It is also necessary for the development of  the 
model to give some general statement about the 
rate of  deformation. It is proposed in this theory 
that the deformation always proceeds at a rate, 
k, such that the rate of increase of  the stored 

energy, f), is maximal. This is equivalent to say- 
ing that the amount of energy converted to heat 
is minimal. Written as an equation this condition is 

- ( w - P )  = 0 .  ( 2 )  

It should be noted that both l~ and P are pre- 
determined functions depending generally on #. 
The rate of external work, l#, is obtained from the 
deformation geometry, and the recovery rate, P, 
depends on the details of the internal microscopic 
processes taking place in the crystal. An argument 
for the physical justification of Equation 2 is 
made in the discussion below. 

In Fig. 1 a schematic overview of the logical 
structure of the model is given. The function ~r(t) 
that is applied to the system continuously changes 
its state, and the response to these changes can be 
calculated by using Equations 1 and 2 as well as 
possible additional relationships which may exist 
between the internal state variables, xi, or between 
their derivatives, xi. This response produces as an 
"output" a function O(t), which is the predicted 
deformation behaviour caused by the applied 
stress e(t). 

The manner in which this model can be applied 
to a specific case will become clear through the 
following example. 

3. Application to dislocation mechanism 
In constructing this simple application of the 
general model to the deformation occurring by a 
dislocation mechanism, the dislocation density p 
is used as a single internal state variable. In the 
case of uniaxial tension the stored energy and 
external work rate per unit volume can be repre- 
sented by the following expressions: 

applied stress 
a(t l  

external  work 
w ( # , ~ , # )  

state var iab les  ~, x i 

stored energy U { o , x  i) 

recovery  
P ( e , o , x  i ) 

strain rate 

Figure 1 The principal funct ions  and variables occurring 
in the model�9 The  vertical arrows illustrate the  defor- 
mat ion  response,  which is controlled by the energy flow 
indicated by  horizontal  arrows. 
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and 

l o  2 
U -  2 E + Kp (3) 

o 
I~ = ~-- d + o~, (4) 

Where E is Young's modulus and K is a constant. 
The direct proportionality between the dislocation 
density and energy in Equation 3 is a good enough 
approximation for the purposes of  this treatment. 
With reference to Equation 4 it should be empha- 
sized that b denotes only the plastic part of the 
total strain rate. 

By substituting Equations 3 and 4 into the 
basic Equations 1 and 2, the following relation- 
ships are obtained: 

and 

o~ - e (~ ,  o, p) = Kt~ (5) 

aP(,L o,p) 
o - 0. (6) 3b 

An expression for the recovery rate function 
P(k, o, p) is derived in the following by considering 
the microscopic deformation phenomena in detail. 

The inequilibrium created by the applied exter- 
nal stress gives rise to forces on the dislocations 
and these forces tend to move the disloactions in 
directions of lesser internal stored energy. Besides 
these active forces, ffa, which are derived from the 
stored energy, there are also velocity dependent 
frictional forces, fir, acting on the dislocations. 
The velocity, ~, of  a dislocation, at all points along 
it will have a value such that the vector sum of all 
the forces, F a + fir, vanishes. When a dislocation 
moves, the stored energy is decreased by the 
amount of the work which the active forces do 
against the frictional ones. This work is dissipated 
into the crystal as heat. Consequently, the rate of 
recovery per unit volume, Pro, due to dislocation 
movement can be written as 

G = p<-Ff'~>, (7) 

where the angular brackets denote the average 
along the dislocations. 

Since the frictional force depends on the veloc- 
ity, the product inside the brackets is also a func- 
tion of the velocity. If we take the simplest 
approximation that the force is proportional to 
the velocity Ff = -- ~ ,  the recovery rate becomes 

P m =  po~ (v 2 ). (8) 
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The plastic deformation rate, b, can be expressed 
by the well known formula 

b = /3bp (v), (9) 

where t3 is a constant and b is the magnitude of 
the Burgers vector of  the dislocations. The relation 
between the average dislocation velocity, (v), and 
the mean square velocity, (v 2), depends on the 
prevailing velocity distribution and can be formally 
written as 

@)2 = G(a, p) @2), (10) 

where the coefficient G(o, p) depends on the velo- 
city distribution, which is determined by the state 
variables a and p. When one part of the disloc- 
ation is stationary and others are moving, the 
function G gives the approximate relative propor- 
tion of the moving dislocations. Therefore it will 
be called a "mobility function" in the following. 
Its value is always between 0 and 1. Equations 8 
and 9 can be combined to yield 

= (11) 
Pm t32b2~(a, p) P 

It is reasonable to assume that some recovery also 
occurs that does not directly result from the dis- 
location movement. Accordingly, an additional 
term is needed to obtain the total recovery rate 
function as follows 

P(b, a,p) ; A +Rp 2, (12) 

where R is a constant and A = a/132b 2 . The form 
of the extra term Rp 2, is based on experimental 
observations of  thermal recovery, e.g. [ 10]. 

By substituting P from Equation 12 into Equa- 
tions 5 and 6 we obtain the following two differ- 
ential equations: 

17 
= ~ G(o, p)p (13) 

and 

o 2 R 2 

= 4 A K G ( O , p ) p - - - K p  . (14) 

The plastic deformation behaviour of the material 
is given by the solutions of these differential 
equations. Unfortunately, the solutions depend 
strongly on the mobility function G(a, p), which 
is not known with any certainty. If G(o, p) has a 
constant value, Go, the solutions tend to approach 
the following "asymptotic" functions regardless 



of the initial conditions and almost regardless of 
the function e(t). 

a(t)= Go (15) 
4RA 

Pe( t )  = 

and 

a(t) 
be(t) = - - ~  OoPe(t). (16) 

These expressions are not very useful in approxi- 
mating the real solutions of Equations 13 and 14, 
but they can be used to obtain the stationary values 
at which the dislocation density and the defor- 
mation rate will settle if the stress is kept constant. 
When the stress is constant and the dislocation 
density settles to the value given by Equation 15, 
then the mobility function, G(o, p), is also un- 
changed, and Equations 15 and 16 are then valid 
solutions for Equations 13 and 14. 

From a given mobility frunction Equations 13 
and 14 can be solved by numerical methods for any 
applied stress, a(t), and for any initial conditions. 
The mobility function, G(o, p), can be estimated 
either by theoretical means or on the basis of 
experimental observations. Its theoretical calcu- 
lation is not attempted here, but an estimate of it, 
for the case of  aluminium at room temperature, 
will be presented on the basis of published experi- 
mental results. 

Luthy et al. [11 ] have measured the steady state 
strain rate of  aluminium for several different 
stresses. Under steady state condition, Equations 
15 and 16 are valid and when the stress and strain 
rate are known, the corresponding dislocation 
density and the ratio G/A are obtained as follows 

and 

p = (17) 

b 1 1/2 
G 4R (18)  V/ 

If the parameter R is given a value (3.2 x 10 -3s /~) 
m 6 sec-'- where/2 is the shear modulus of  alumin- 
ium, the dislocation density from Equation 17 is 
in agreement with the value estimated experi- 
mentally on the basis of calorimetric measure- 
ments [12]. Using these formulae the ratio G/A 
was calculated for five different (o, p)-pairs. If  the 
somewhat arbitrary value (1011 x 1//2) sec -1 m -2 is 
given to the parameter A, the values given in Fig. 
2 are obtained for G. It is naturally not possible 
on the basis of solely these five data points, which 
lie on a line, to determine the exact course of the 
function G(o, p). However, by studying different 
possible solutions of  the differential Equations 
13 and 14 and with the help of some guessing it 
was deduced that the following expression should 
constitute a good analytical approximation for the 
mobility function: 

1 
G(, , ,p)  = { p _ p o l  , (19)  

l + e x p  ~ k - - ~ o  / 

where 

Po = ( l o )  p + n, (20)  

in which k, l, p and n are parameters depending on 
the metal in question as well as on the temperature. 
In Fig. 2 the contours of equal value of this func- 
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Figure 2 The mobility function 
G(o, p) for aluminium at room 
temperature as fitted to the 
experimental datapoints shown. 
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Figure 3 Numerically calculated 
solutions for Equat ion  14 in the  
o-p-co-ord ina te  system for dif- 
ferent rates o f  increase in the  
stress and for different  initial 
conditions.  The mobil i ty  func- 
t ion is the  same as shown in 
Fig. 2. The solutions for con- 
stant  G(=  1) are shown as dot ted 
lines. 

tion, G(o, P), are also shown as fitted to the data 
points. The fitting gives the following values to 
the parameters: k = 0.2, l =  1.142 x 107 x 1/# 
m -2a', p = 13 and n = 101~ -2. This fit is by no 
means unique, several other choices of  parameters 
would have resulted in a function agreeing equally 
well with the available data. 

In Figs 3 and 4 numerically obtained solutions 
for the differential Equations 13 and 14 are illu- 
strated for the case of the mobility function as 
constructed above. The stress, a(t), is taken to 
increase linearly at different rates. The parameters 
A and R have the values mentioned above and the 
value (5 x 10-24/~) m4was used for the parameter K. 

It can be seen that the solution of the a-p- 
co-ordinate system closely follows the constant G 
solution when G ~ 1 and then becomes perpendic- 
ular to the gradient of G. The stress-strain curves 

in Fig. 4 cannot be directly compared with experi- 
mental data, since they are calculated for a con- 
stant rate of increase in stress. Their general shape, 
however, seems to be the correct one. 

4.  D iscuss ion  
The plastic deformation is seen here as a process in 
which part of the external work done on the speci- 
men, is converted to heat by the friction of defect 
movements or by other microscopic processes. The 
remainder is stored in the crystal as stored energy. 
The principle of  minimal energy release formulated 
above in Equation 2 is crucial for the development 
of this model. According to this principle, the 
plastic deformation proceeds at a rate such that 
the energy dissipation rate is minimal at all times, 
i.e. the rate of increase in the stored energy, O, is 
maximal. 
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Figure 4 The s t ress -s t ra in  curves 
corresponding the  solutions in 
Fig. 3. 



In the case of the above application the rate of 
increase in the stored energy is the following 
function of the deformation rate: 

o A b2 
0 = --ff O + o+ G(o, p) p RP2" (21) 

This equation tells us what the rate of change in 
the stored energy would be at a deformation rate 
b, when the crystal is in a particular internal state 
(particular p) and when there is an external stress 
of a particular magnitude, a, acting on it. The rate 
of increase in the stored energy has a maximum 
according to this equation. The value of b, at which 
the maximum is attained, is the rate at which the 
deformation will proceed in reality, according to 
the principle of  minimum energy release. Fig. 5 
illustrates the situation. It must be noted that the 
curve giving the dependence of 0 on b according 
to the above equation changes continuously and 
its maximum point moves accordingly. The depen- 
dence U(b), which is observed experimentally, is 
the track of these maximum points. 

An argument for the physical justification of 
the principle can be made as follows: 

Let us consider a relaxation experiment in 
which an external stress is instantly applied to the 
specimen and the specimen length is then kept 
constant. Part of the elastic strain that was instantly 
created by the application of the stress then 
slowly changes to plastic strain during relaxation. 
Before the application of the stress the dislocations 
in the specimen were in equilibrium configurations 
in such a way that the active forces on them vanish. 

Figure 5 The dependence of the rate of increase in the 
stored energy on the deformation rate. At every instant 
during the deformation there is a potential instantaneous 
function 6r(b), whose maximum point determines the 
real ~. 

The application of the external stress has two con- 
sequences: (1) the energy of the stress field inside 
the specimen (i.e. the stored energy) is increased 
instantly by a particular amount and (2 )non -  
zero active forces are created on the dislocations. 
In the ensuing dislocation movement, part of the 
stress field energy is dissipated. The movement 
continues until the dislocations reach a new 
equilibrium configuration, after which plastic 
deformation ends. It seems reasonable to think 
that the dislocations tend to seek the closest 
possible new equilibrium configuration, which 
means that the smallest possible amount of energy 
is dissipated, which is the principle of minimum 
energy release. More complex situations, where 
there is a continuous influx of external work, can 
be regarded as generalizations of the above case. 

The crux of the above argument is that all the 
external work is initially used to increase the 
stored energy and creates an inequilibrium situ- 
ation resulting in minimal energy dissipation. It 
should be noted also that the principle of  minimal 
energy release is also in agreement with the prin- 
ciple of smallest entropy production for stationary 
processes in irreversible thermodynamics. Plastic 
deformation does not, however, seem to be a 
stationary process in the thermodynamic sense. 

In the application of the model to a dislocation 
mechanism, a number of  simplifications, assump- 
tions and approximations were made. None of 
them are strictly essential for the application of 
the theory, their purpose is to keep the treatment 
as simple as possible. In that sense what is presented 
should be regarded as a type of first approximation. 

The simplification made above, that the fric- 
tional force opposing the dislocation movement 
is directly proportional to the velocity, is probably 
only true in reality for very small velocities. The 
exact functional relationship between the force 
and velocity does not, however, have any signifi- 
cant effect on the results obtained here. The struc- 
ture of  the model would stay the same, if in 
Equation 8 instead of (v 2) an average of some 
more complicated but realistic function of the 
velocity appeared. 

The mobility function, G(a, p), forms the link 
between the dislocation deformation model pre- 
sented and experimental observations. It is pos- 
sible to devise experiments from which the mobility 
function could be determined, such as, calori- 
metric measurements of stored energy and steady 
state deformation tests during which the stress is 
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changed instantly. On the other hand, the mobility 
function could be calculated theoretically by con- 
sidering the interactions in various dislocation 
configurations occurring in the deforming crystal. 
By comparing the experimantally determined 
mobility functions to the theoretically derived 
ones information about the microscopic defor- 
mation mechanisms could be obtained. In this way 
the model developed would serve as a useful tool 
in gathering knowledge on real plastic deformation 
mechanisms. 
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